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Experiment~ ~n o.rient.ed cores from a single crystal of quartz show that the temperature of 
the a-f3. transItIon IS raIsed 10.6 ± 0.4°C/kb and 5.0 ± OAoC/kb by uniaxial compression 
perpen~lcular and parallel, respectively, to the optic axis at a confining pressure of 3 kb. 
Approx.lmately the same results are indicated for confining pressures ranging from 1 to 5 kb. 
There IS no detectable curvature of the phase boundary for uniaxial stresses iT between 0 and 
10 kb: I (d2T._~/d<?) I < 0.05°C/kb". The increase of transition temperature with hydrostatic 
pre~ure of 25.8 ± 0.3°C/kb between 1 and 5 kb also determined in these experiments is 
consls~ent with p:eviou~ d~ter~inations. The.s~ results and others for quartz are analyzed 
assumlllg the a-f3 lllverSlOn IS eIther a A transItIon or a first-order transition characterized by 
a. small reversible transformation strain. Although both hypotheses are roughly consistent 
WIth most of the results, the hysteresis in the transition suggests that the second may be 
preferable, an? a theory is developed that describes the effect of general nonhydrostatic stress 
on such transItIons. 

INTRODUCTION 

The effect of nonhydrostatic stress in the 
solid earth on the thermodynamic stability of 
minerals may yet prove important to geology. 
The problem has attracted considerable interest 
over the past 75 years, and various aspects of 
the thermodynamics of non hydrostatically 
stressed solids have been treated by scientists 
of many backgrounds. 

In his classic 1878 paper, Gibbs [1906J con­
sidered a solid in a state of homogeneous, non­
hydrostatic stress in equilibrium with a fluid 
(either the pure melt or a solution of the solid). 
By applying the basic thermodynamic prescrip­
tion for equilibrium-that the internal energy 
be minimum with respect to all virtual infinites­
imal changes of the system that maintain the 
entropy S and volume V constant-he derived 
the familiar thermal and mechanical conditions 
for equilibrium as well as the novel condition 
that the chemical potential of the solid in the 
adjacent liquid varies with the orientation of 
the interface. The magnitude of this variation 
he showed to depend chiefly on the degree to 

1 Now at Department of Earth Sciences, Univer­
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which the stress departs from hydrostatic pres­
sure; crystalline anisotropy (if any) enters only 
as a second-order effect. The sense of this varia­
tion is always such that the solubility of the 
solid is greatest at the interface that is subjected 
to the greatest compressive stress. Thus, if self­
diffusion were to take place at a noticeable 
rate, material would diffuse from the faces with 
maximum compressive stress to those with least 
compressive stress until hydrostatic pressure 
was restored. This result shows that true thermo­
dynamic equilibrium requires hydrostatic pres­
sure; the nonbydrostatically stressed state is a 
metastable one. If it is assumed, however, that 
self-diffusion is exceedingly slow compared to 
other processes such as melting or dissolvinO' 
then a pseudo-equilibrium state can be defined 
in which the stress need not be hydrostatic and 
the melting point or solubility of the solid at 
various interfaces can be determined. 

Gibbs' conclusions retain their validity today, 
but there has been considerable further work. 
His ideas have been applied recently by Kamb 
[1959, 1961a] and Ida [1969] to the problem of 
preferred orientations of minerals developed by 
recrystallization in nonbydrostatically stressed 
polycrystalline materials. Bridgman [1916] gen-
eralized the case treated by Gibbs to include 
any two phases of a pure substance in differ-
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ent arbitrary states of stress in equilibrium 
across a permeable membrane that supports 
the stress differences. (A special case of this 
was considered by Riecke [1895].) In particular, 
he concluded for the case of two crystaUine 
polymorphs in identical states of stress that a 
change of orientation of the crystal axes with 
respect to a given stress system and interface has 
only a second-order effect on the change of tem­
perature of the transition due to the stress. Mac­
Donald [1957] applied Gibbs' theory to poly­
morphic transitions in solids under conditions 
that amount to a special case of Bridgman's 
treatment and, likewise, concluded that crystal­
line anisotropy produces a negligible effect on 
the slope of the phase boundary of most first­
order transitions. He pointed out, however, that, 
when M and D. V of a first-order transition are 
very small, the terms involving elastic anisot­
ropy become significant, and he therefore pre­
dicted that the a-f3 quartz transition would 
be greatly influenced by nonhydrostatic stress. 
Although he was certainly correct in this pre­
diction, the experimental results we present in 
this paper are not consistent with his theory. 
Finally, McLellan [19G6, 1968] generalized 
Gibbs' treatment to include the question of 
equilibrium of any number of components be­
tween any number of phases and showed that, 
except for a few very special sorts of configura­
tions, true thermodynamic equilibrium can only 
occur if the stress is hydrostatic (even if self­
diffusion could not take place). There are many 
other works dealing with aspects of the prob­
lem; these include Goranson [1940a, b] Ver­
hoogen [1951], MacDonald [1960], Kumazawa 
[1963], and Ito [1966], some of which are dis­
cussed below. 

There is considerable disagreement among 
many of these papers. (See Kamb [1961aJ for a 
discussion of some of these discrepancies and 
the ensuing discussions by Hoffer [1961J, Mac­
Donald [1961J, Kumazawa [1961J, and Kamb 
[1961b].) One of the difficulties has been the 
lack of quantitative experimental studies to 
provide tests for the theories. As an approach to 
the problem we chose to investigate the effects 
of nonhydrostatic stress on the a-f3 transition 
in quartz because this transition is fast and 
reversible and because quartz can withstand 
large stress differences without breaking. More­
over, quartz is a relatively simple material of 

general interest, about which much is known, 
and is of great importance in geology, especially 
in structural and metamorphic studies. Finally, 
.our investigation is relevant to other work on 
quartz, in particular to recrystallization experi­
ments under nonhydrostatic conditions near the 
a-f3 phase boundary, where it sometimes may 
not have been certain in which field recrystalliza­
tion took place [Carter et al., 1964; Green, 
1967]. 

In this paper we demonstrate that the tem­
perature of the a-f3 transition in a single crystal 
of quartz subjected to a given nonhydrostatic 
stress depends strongly on the orientation of the 
crystal with respect to the principal axes of 
stress. The results are not consistent with any 
of the works cited above but are roughly con­
sistent with predictions made by Garland 
[1964], which assume that the transition is a A 
transition, that is, a second-order phase transi­
tion in which the volume V and entropy S are 
continuous across the boundary but the deriva­
tives of V and S with respect to temperature T 
and pressure P approach plus or minus infinity. 
(See Klement and Cohen [19G8] for a careful 
examination of tllis assumption.) 

A case can be made, however, that the inver­
sion in quartz is actually a first-order transition 
that retains much of the character of a A transi­
tion. The essential similarity is that the transi­
tion is characterized by a small reversible 
transformation strain which, for noncubic crys­
tals, generally involves a change in shape as 
well as a change in volume. Thus, as the quartz 
crystal passes from the a to the f3 phase, it 
remains intact, the optic axis remains the same, 
the relative elongation parallel to the optic axis 
is less than that perpendicular to it, and the 
original dimensions are recovered on passing 
back through the transition if the stress differ­
ence is not so large as to cause plastic flow. 
The difference from a A transition is that the 
strain flol is assumed to undergo a first-order 
change, i.e., there as a nonzero D.flol at the 
transition. 

We show that, for this type of transition, 
equilibrium depends on the orientation of the 
crystal with respect to the stresses but not on 
the orientation of the interface between the two 
phases. A chemical potential that reduces to 
the usual expression for hydrostatic pressure 
can be defined. This potential is the same 
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throughout a homogeneously stressed crystal at 
constant temperature and from it there follows 
a generalization of the Clapeyron equation that 
describes the slope of the phase boundary with 
respect to each stress component, in direct 
analogy to the formulas derived by Garland 
[1964J for A transitions. Thus, the fact that our 
experimental results fit the first-order formula 
as well as the A-transition formula is to be ex­
pected. 

A transition between two crystalline phases 
that is characterized by a reversible transforma­
tion strain will be coherent. McLellan [1968J 
recognized this type of transition, but he scems 
not to have allowed for transformation strains 
that are not purely dilatational, and Verhoogen's 
[1951J results suggest the same inherent limita­
tion (see Appendix C). Kumazawa [1963J, on 
the other hand, included shape as a thermo­
dynamic parameter but did not consider the 
possibility of coherent first-order polymorphic 
transitions, except for twinning (see Appendix 
C). 

All the other works referred to in the second 
and third paragraphs of the Introduction as­
sume implicitly or explicitly that the transfor­
mation from one phase to the other involves 
an incoherent intermediate state, such as occurs 
in solid-liquid transitions and in solid-solid 
transitions that proceed via a liquid phase or 
involve diffusion along grain boundaries or 
within the crystal for distances large compared 
to the atomic spacing. These transitions are not 
characterized by a well-defined change in shape 
but , only by a change in specific volume. Con­
sequently, it is assumed that the transformation 
between the two phases at a given interface 
causes work to be done only by thE' component 
of stress normal to that interface, not by the 
tangential stresses. Because the difference in 
specific volume only changes with orientation in 
a nonhydrostatic stress field by the small amount 
due to the difference in elastic distortion of the 
two solid phases, equilibrium for this mode of 
transformation would not be sensitive to the 
crystallographic orientation unless the specific 
volumes were very nearly equal. 

It may seem strange that the phase that is 
at equilibrium under nonhydrostatic stress may 
be different depending on whether the mode of 
transformation involves a coherent or an inco­
herent intermediate form, because either mech-

anism is capable of producing the same mineral 
in the same state of stress. The resolution of 
this apparent paradox lies in the realization 
that the equilibrium acbieved in either case is 
metastable (unless the stress is hydrostatic) 
and that the change in shape involved in the 
transformation between the metastable forms 
differs for the two mechanisms. 

In this paper we first discuss the nature of 
the a-f3 transition, then describe the experi­
mental procedure, present the data, and discuss 
the results wih respect to the theories of both 
second- and first-order phase transitions. Finally, 
we conclude by briefly indicating other situa­
tions to which the theory may be applicable. 

NATURE OF THE a-f3 QUARTZ TRANSITION 

When low or III quartz (trigonal class 32) is 
heated at atmospheric pressure, it transforms 
to high or f3 quartz (hexagonal class 62) at 
about 574°C. (The temperature of the transi­
tion can be significantly affected by the presence 
of certain impurities, but in a careful study of 
many different natural quartz specimens Keith 
and Tuttle [1952J found that 95% of them had 
inversion temperatures within 2.5° of 573.2°C.) 
On cooling the quartz transforms back to the 
a phase, usually 1° or 2°C below the tempera­
ture at which it transformed on heating [Keith 
and Tuttle, 1952J. 

The transition is heralded well in advance 
by accelerating rates of change of volume V 
and entropy S. Because the expansion is iso­
tropic in the plane perpendicular to the C 
axis (from symmetry [Nye, 1957, p . 23J), the 
change of V with temperature T can be in­
ferred from the relative changes in length par-
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function of absolute temperature [after Mayer, 
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Fig. 2. Specific heat of quartz according to M oseT [1936] and Sinel'nikov [1953]. 

allel and perpendicular to the C axis (Figure I). 
Agreement is good between these and other 
measurements except within a few degrees of 
the transition, where there is disagreement over 
whether or not a discontinuity exists. 

The entropy is known even less well as a 
function of temperature than is the volume. 
Moreover, the detailed behavior of the specific 
heat, Cp = T (aSj aT)p, in the region of the 
transition appears to be sensitive to the state 
of subdivision of the sample [Berger et al., 
1965J and to the presence of impurities that 
hardly change the transition temperature at all 
[Coenen, 1963J. Thus, it is not surprising that 
the determinations of Cp vary from worker to 
worker and sample to sample (see two examples 

in Figure 2) and that there is disagreement 
about whether or not the entropy is continuous 
across the transition (absence of latent heat). 

Measurements of the complete set of com­
pliances for quartz as a function of temperature 
through the transition have only been obtained 
by dynamic means and, hence, are presumably 
adiabatic values. Ordinarily, the difference be­
tween the isothermal and adiabatic compliances 
is of the order of a per cent, and conversion, 
if necessary, is straightforward [Nye, 1957, p. 
178]. Near the transition, however, the specific 
heat and thermal expansion become large, so 
that the difference is both significant (10 to 
20% at 570°C) and quite uncertain (because 
of variations in absolute temperature measure-
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ment and experimental material for various 
sets of data in the literature). Thus, the 
smoothed compliances presented in Figure 3 
are almost all dynamically measured adiabatic 
values rather than isothermal values, which 
are theoretically more useful. 

A qualitative description of the 0.-(3 inversion 
on an atomic scale has been developed by 
Young [1962, 1964J, based on his X-ray studies 
of single crystals. He concludes from measure­
ments of the intensities of reflections from sev­
eral planes as a function of temperature that 
there are actually two sorts of changes that 
reach a climax at nearly the same temperature: 
(1) a true first-order transition marked by an 
'experimentally discontinuous' shift of the equi­
librium positions of the atoms, a 50% increase 
in amplitude of vibration of the oxygen atoms 
perpendicular to the Si-O-Si planes, and an 

abrupt increase in the Si-O-Si bond angle of 
about 2 degrees ; and (2) a dramatic increase 
in the development of small-scale Dauphine 
twins. The first-order transition is the culmina­
tion of a continuous change toward the (3 con­
figuration, which is induced by increasing ther­
mal vibrations as the critical t ransformation 
temperature is approached and does not vary 
significantly from crystal to crystal. The de­
gree of development of Dauphine twins, how­
ever, is different for different specimens; it may 
start anywhere from a few degrees to many 
tens of degrees C below the transition and may 
or may not achieve a maximum (50% twinning 
by volume) throughout the sample before the 
real transition. 

The extensive formation of Dauphine twins, 
whether they are fixed in space at a given tem­
perature or whether they hop around in the 
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are statically measured isothermal values of Perrier and de M androt [1923] . The adiabatic 
correction for these values a negligible.) Agreement between the two sets of data is, in gen­
eraI, good. 



4926 COE AND PATERSON 

C +or X3+ 

~------ ----- .--- - ai 
I \' (IIC) 

/ \ 
I \ 

/ \ 
/ (rl) \ ZtX (0111) 

/ \ 
/ , ~-(o) 

I 0 \ 
/ r2+ (1011) \ 

I \ 
I \ 

I \ 

m2 (l Ola) 
o tor X t 

Fig. 4. Segment of upper hemisphere equal-area projection of a-quartz crystal showing 
crystal axes Ca, Ik, a., c) and Cartesian reference axes (Xl, x., X.) as proposed in the IRE 
Standards [1949, p. 13841, rhombohedral faces (r., Zl), prismatic faces (m" and m.), and the 
orientations of the sample cores (1. C, IIC, 0 and r'). 

crystal, seems to be capable of explaining many 
troubling phenomena connected with the tran­
sition and gives substance to the postulated 
micro-heterogeneities of Semenchenko [1957, 
1965J. The difference between the structures on 
either side of a Dauphine twin boundary can 
be described by a 180° rotation about the C 
axis, so that in the bounding wall some atoms 
must be vibrating about positions that corre­
spond more nearly to those of hexagonal f3 
quartz. An increase in the degree of twinning, 
which is to be expected as the transition to f3 
qilartz is approached, may possibly explain the 
reports of some workers [Khlapova, 1963; 
Berger et al., 1966J that a- and f3-quartz lat­
tices coexist over ranges of temperatures as 
large as 10° to 30°C. In addition, the rapid 
increase in the scattering of light by quartz 
observed by Yakovlev et al. [1956J can be in­
terpreted as arising from boundaries between 
microtwins (see also the more recent study by 
Shapim and Cummins [1968J). Finally, as was 
pointed out by Young [1962J, the variation in 
twinning from sample to sample may also help 
explain the variability in latent heat (or rate 
of increase of specific heat) reported in the 
literature and indicated by the variable shapes 
of the DTA peaks found by Keith and Tuttle 
[1952J . There is some question, however, 
whether the twin-boundary energy is large 

enough close to the transition for this effect 
to be significant. 

The question still remains whether or not 
there is a truly first-order component in the 
a-f3 transition. The measurements of volume 
and specific heat are not conclusive; all we can 
say is that they change very fast near the 
transition. Young [1962J shows that the abrupt 
changes in intensity of X-ray reflections from 
certain planes that are not affected by Dau­
phine twinning are completed within a tem­
perature range as small as 1°C. Anomalous in­
creases in the rotation of plane-polarized light 
at the transition reported by Mikheeva and 
Shustin [1964J occur within an interval of 
about 0.3°C, and the thousandfold increase in 
the Rayleigh scattering observed by Yakovlev 
et al. [1956J occurs within about 0.1 °C. The 
uncertainty of absolute temperature measure­
ments and the variability of the properties of 
quartz used in the various investigations, how­
ever, prevent us from knowing whether these 
anomalous changes all take place at precisely 
the same point, and, if they do, whether this 
point corresponds exactly to the transition tem­
perature (defined by the change in crystal 
symmetry). 

In summary, there may well be a small first­
order component in the a-f3 quartz inversion, 
but it certainly is not a typical first-order tran-

., 
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sltlOn. Because a finite discontinuity in any 
physical quantity is difficult to distinguish from 
an extremely rapid continuous variation, it may 
seem futile to try to decide whether the transi­
tion is first or second order; the theoretical 
treatment should be capable of handling either 
possibility. Later, however, experiment!)l details 
will be discussed that make us suspect that the 
transition is a first-order transition that closely 
resembles a .\ transition but that does not rig­
orously satisfy the definition given in the In­
troduction for a .\ transition. 

SPECIMENS 

Cores about 1 cm in diameter by 2 cm in 
length were drilled from a single clear left­
handed quartz crystal of unknown origin. Fig­
ure 4 shows the four orientations of the core 
axes that were determined from crystal mor­
phology within an uncertainty of about 2°. 

The ends of the cores were ground parallel 
within 10-3 cm. Some were more highly fin­
ished-optically fiat, parallel, and polished to 
better than 0.5 X 10'" cm and ground smoother 
and truer on the cylindrical walls as well. One 
of these samples was silver plated on the ends. 
These refinements appeared to have little effect 
on the experiments, except possibly to raise the 
fracture strength. 

In addition, hollow samples were tested for 
all orientations except 1" (Figure 4). All but 
one of these were made by ultrasonically drill­
ing a small hole of roughly circular cross section 
(diameter about 0.175 cm) along the axis of a 
solid sample. One hollow sample with a larger 
hole (0.4 cm) was made with a diamond core 
drill. Although the inner holes differed in de­
gree of ellipticity, taper, and eccentricity by 
as much as about 10%, the effects of these 
variations could not be detected in our experi­
ments. 

APPARATUS 

The experiments were done in an apparatus 
designed for rock deformation studies at pres­
sures to 10 kb and temperatures to 1000°C 
(M. S. Paterson, unpublished data, 1969) [cf. 
Raleigh and Paterson, 1965]. It consists of an 
argon-filled pressure chamber with internal fur­
nace into which a piston is introduced to apply 
an additional axial load to the specimen and 

. has facilities for measuring the load exerted by 

the piston and its displacement as well as the 
temperature and the hydrostatic confining pres­
sure. 

Pressure was measured with an accuracy of 
± 1 % by the change in resistance of a man­
ganin coil and was controlled within ±10 bars. 
Temperature was measured with a commercial 
chromel-alumel thermocouple, sealed within a 
stainless steel sheath and insulated with mag­
nesium oxide. In general, the sheath was 0.1 cm 
in outside diameter, but in some of the work a 
set of three 0.05-cm diameter thermocouples 
was used. The thermocouple was introduced 
along a small axial hole in the piston to make 
contact with the end of the specimen or to 
enter the specimen if it was hollow, the speci­
men being sheathed and sealed to the piston by 
use of a soft copper jacket of 0.025-cm wall 
thickness. Thus, the thermocouple was always 
at atmospheric pressure, eliminating any need 
for correcting for the effect of pressure. Sensi­
tivity of temperature measurement was ±0.5 
to 1°C, and the overall accuracy was probably 
±2°C, except for some of the runs with 0.05-
cm thermocouples, when local shorting near the 
junction introduced error and possibly reduced 
this to ±4°C. 

The additional axial load was measured with 
about 5-kg sensitivity by a load cell inside the 
pressure chamber, thereby eliminating uncer­
tainties due to piston friction. The load cell 
consisted of a hollow steel cylinder, to which 
electric resistance strain gages were attached, 
and was calibrated against an external load cell 
of known calibration, giving an accuracy of 
load measurement of about ±3%. (There is 
possibly a somewhat greater error in runs 580 
and 590, Table 2, owing to erratic behavior of 
an earlier load cell.) 

Piston displacement could be measured with 
a sensitivity of about 2 X 10'" cm. However, 
an apparatus distortion correction of about 
(7.0 ± 0.5) X 10-6 cm/kg load is needed for 
obtaining the actual strain, leading to an un­
certainty of about 0.25 X 10'" bar-1 in deter­
mining compliances in the specimen. 

EXPERIMENTAL PROCEDURE 

The experiments were always conducted with 
a hydrostatic confining pressure of 1 kb or more 
in order to extend the range of the uniaxial 
stress that could be applied without fracturing 
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the load trace are sample temperatures in degrees O. The load pen led the displacement pen 
by the equivalen,t of 7-8 sec. The transtion is marked by softening of the sample and can 
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the sample. The technique was to hold the 
temperature and pressure fixed at values such 
that the sample was in the f3 field when the 
axial load was zero. The load was then smoothly 
increased to the point at which inversion to 

the a phase occurred and well beyond, then 
decreased until the f3 phase was regained (Fig­
ure 5a). The point on the load and displace­
ment curves that corresponded to the greatest 
compliance was taken as the transition bound-
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Fig. 5b. Stress-strain curve constructed from record of Figure 5a shows more clearly the 
softening that marks the transition as well as the hysteresis. The straightish section in the 
fJ field does not extrapolate to the origin because about l-kb stress is needed to seat the vari­
ous surfaces in the load column before the value 7 X 10 .... cm/kg taken for apparatus dis­
tortion is valid. The lack of coincidence below the transition stress of the curves of increas­
ing and decreasing stress is unusually large in this example, and we have no ready explanation 
for it. 
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ary. In general, there wa13 some hysteresis be­
tween points determined with increasing and 
decreasing load (Figure 5b), but the point of 
maximum compliance was not affected by rate 
of increase of stress within the range used 
(0.004 to 0.020 kb/sec). Table 1 shows how 
the magnitude of the observed compliance 
varied through the transition for different ori­
entations of specimen. 

The transition point given by the compliance 
maximum is essentially the same as that re­
vealed by a differential temperature peak de­
termined analogously to the usual DT A method. 
This was shown in a few runs with hollow 
samples (595,596, and 601, Table 2), in which 
the difference in emf of a pair of 0.05-cm ther­
mocouples-one 0.5 em inside the sample and 
the other 1 em above in the piston-was moni­
tored. In 49 out of 54 times that the phase 
boundary was crossed, a peak of 0.5° to 1.5°C 
occurred at or just after the maximum in com­
pliance, and the sign of the anomalous tem­
perature difference was in every case consistent 
with the direction of crossing. (The sample 
cooled with respect to its immediate surround­
ings when going from a to f3 and heated when 
going from f3 to a.) The position of the peak 
was influenced by the rate of increase of stress: 
at the slowest rates it coincided with the com­
pliance maximum, whereas at the fastest rate it 
lagged slightly behind. 

The experimental difficulties were mainly as­
sociated with temperature variations in the 
specimen. If the temperature gradient along 
the specimen exceeded l°C/cm, the transition 
became too smeared out to be reliably detected. 
The gradient was controlled by proportioning 
the current in the furnace between an upper 
and a lower winding, more current being re­
quired in the lower one in order to counteract 
the effects of intense vertical convection in the 
compressed argon along the furnace axis. In 
hollow samples the temperature gradient was 
observed directly, whereas in solid samples it 
was controlled by appropriately adjusting the 
gradient in the hollow piston immediately above. 
The temperature changed with time, sometimes 
erratically, but as long as the drift was less 
than 1°C/min the gradients in the sample re­
mained negligible, the transition was sharp, and 
useful measurements could be made. 

The transition did not appear to be signifi-

cantly smeared by nonuniformities of stress in 
the specimen. This will be discussed more fully 
later. 

EXPERIMENTAL RESULTS 

When the temperatures of transition at sev­
eral values of uniaxial stress CT and constant 
hydrostatic pressure P are plotted versus stress 
for a given sample, the points fall remarkably 
close to a straight line. Figure 6 shows two such 
straight lines obtained in two runs on samples 
of different orientations at 3-kb confining pres­
sure. Several interesting features are well illus­
trated: (1) the slope of the transition is quite 
different for the two orientations; (2) there 
is no identifiable curvature (less than 0.05°C/ 
kb' for 0 < CT < 10 kb) in either line; (3) 

TABLE 1. Experimental Estimates of the Com­
pliance of Quartz for Pressures between 1 kb 

and 5 kb 

Orientation 

..LC (along X2) 

IIC (along xa) 
o (45° to Xa) 
r' (43° to Xa) 

Notes. 

Compliance, units (106 X bars)-l 

a Field f3 Field 

1.7±0.2 0.8±0.2 
1.2±0.2 1.0±0.2 
1.2±0.2 0.7±0.1 
1.8±0.1 1.0±0.1 

Transition 
Point 

7.5±3.0 
3.0±1.0 
3.3±0.5 
4.0±1.0 

Uncertainties listed are standard deviations, 
assuming the value used for apparatus distortion is 
correct, and thus represent the precision of the meas­
urements. An additional uncertainty of ±0.25 X 
10-8 bars-1 arises from uncertainty of apparatus 
distortion. 

a and f3 field compliances are averages for the 
region outside the obvious transition (0.5 - 1.0 kb 
uniaxial stress away from the point of maximum 
compliance) region. 

The transition point compliance is the 'average 
maximum' compliance measured in the transition 
region and must be regarded as intermediate 
between isothermal and adiabatic. 

Compliances for orientations ..LC, IIC, and 0 are 
for both solid and hollow specimens; r' for solid only. 

Data are roughly in accord with dynamically 
measured compliances at atmospheric pressure. 
Greatest inconsistency is that all values calculated 
for 0 and r' orientations are considerably greater 
than those in Table 1. Also the values for 0 and r' 
(and all other orientations __ 45° to xa) should be 
equal in the f3 field because of the hexagonal sym­
metry [Nye, 1957) but are obviously not in Table 1. 
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10 
COMPRESSIVE STRESS (kb) 

Fig. 6. Temperature of the ct-fJ transition at a constant confining pressure of 3 kb as a 
function of compressive stress 1. e (run 602) and lie (run 603). The transition fJ ~ a (in­
creasing stress) is denoted by triangles, whereas a ~ fJ (decreasing stress) is denoted by 
circles. See Table 2 for least-squares values of slope and intercept for these runs. 

extrapolation of the lines to zero compressive 
stress yields essentially the same temperature 
intercept; (4) there is hysteresis in the transi­
tion even at zero compressive stress; and (5) 
the slope of the line determined from transitions 
from the {3 to the a phase, (0 TjOCT),_>a, is 
slightly less than (OTjOCT) 0->" 

All the pertinent experimental data are col­
lected in Table 2, including those graphically 
presented in Figure 6. The slopes, intercepts, 
and the standard deviations of both are those 
for the best-fitting straight line according to 
the method of least squares. (These single­
regression standard deviations are not statisti­
cally rigorous because errors may occur in 
both Ta_, and CTa_p, but they are useful indi­
cators of relative scatter.) 

Several points of interest in interpreting the 
results emerge from Table 2: 

1. Solid and hollow samples behave the 
same under comparable conditions, as shown by 
runs 602 and 601, 607 and 606, and 603 and 
595-596. There may be a slightly greater slope 
of the a-{3 boundary for hollow samples, but 
the scatter makes the reality of this distinction 
questionable. 

2. A slight dependence of oT._,jOCT on pres­
sure is observed for the 1. C orientation- about 
+0.2°Cjkb per kilobar of hydrostatic pres­
sure in the range 1 to 5 kb. There are not 
enough data to be sure if this is a real variation, 
and the case for other orientations is even more 
doubtful. 

3. From an analysis of the standard devia­
tions there is a suggestion that (OTjOCT)._>, is 
slightly greater than (0 T j OCT) p_>. in the same 
experimental run by 0.25 ± 0.25°Cjkb. A reg­
ular dependence of this difference on pressure 
or specimen orientation is not evident. (There­
fore, in calculating the mean slope in Table 2 
for those few runs in which only (iJTjiJu)P_>a 
was determined, 0.12 ± 0.25°C/kb was added 
to this measured value.) It is also observed 
that the standard deviation of the mean slope 
of a line is generally significantly less than the 
scatter of slopes among different experimental . 
runs under ostensibly the same conditions. Both 
these details of the results may be caused by 
additional variable components of stress, which 
could arise either from the difference in lateral 
changes of dimension between the quartz and 
the adjacent carbide end pieces or even possibly 
from differences in the development of Dau-



TABLE 2 

Sample No. of aT a-fJ/a~ Slope, TO a-fJ Intercept, 
Min. Max. Pointst °Cjkb °C 

Run Core p* , (P)t, ~t, ~t, 
No. Axis Type Final Condition kb kb kb kb {J-70l 0l-7{J {J-70l 0l-7{J Mean§ {J-70l Ol->{J Mean§ 

580- .LC Solid 3.00 3.00 1.0 3.0 3 0 10.28 10.40 650.1 650.9 
±0.83 ±0.87 ±3.1 ±3.2 

4.00 4.00 0.1 2.7 16 0 10.80 10.92 675.5 676.3 
±0.09 ±0.27 ±0.5 ±1.0 

5.00 5.00 0.2 0.9 3 0 11.50 11.62 702.4 703.2 
..., 
t:q 

±1.24 ±1.27 ±1.3 ±1.6 t:<.1 
602b .LC Solid· Intact: A few 3.01 3.01 1.5 10.0 16 16 10.21 10.41 10.31 646.8 648.6 647.7 R 

fractures ±0.03 ±0.03 ±0.14 ±0.8 ±0.7 ±1.3 -0, 
5900 .LC Hollow Intact: No 1.01 1.04 0.4 3 .8 5 3 9.18 9.71 9.44 600.9 601.6 601.2 H 

fractures ±0.10 ±0.06 ±0.37 ±0.5 ±0.3 ±0.5 'z! 
<: 

2.01 2.07 0.3 3.8 7 4 8.93 9.53 9.23 627.3 628.5 627.9 t:<.1 

±0.10 ±0.44 ±0.43 ±0.6 ±2.1 ±1.5 ~ 
m 

3.02 3.11 0.7 5.3 14 8 9.60 9.48 9.54 654.2 657.3 655.7 H 

0 
±0.04 ±0.09 ±0.09 ±0.4 ±0.8 ±2.2 'z! 

4.01 4.13 0.4 5.3 7 0 9.23 9.35 682.1 682.9 H 

±0.06 ±0.26 ±0.5 ±1.0 'z! 
5.02 5.17 1.1 4.8 5 0 9.12 9.24 708.0 708.8 § 

±0.18 ±0.31 ±1.2 ±1.3 ;r-
601 .LC Hollow<! Intact: Fractures 3.01 3.01 2.2 6.1 7 7 10.31 10.51 10.45 648.6 650.3 649.4 ~ 

at both ends ±0.12 ±0.11 ±0.14 ±1.4 ±1.3 ±1.4 
..., 
N 

604- .LC Hollow· Intact, but densely 1.00 1.03 0.5 6.2 8 6 10.01 9.86 9.94 599.4 601.7 600.5 
605 filled with fractures ±0.06 ±0.11 ±0.10 ±0.6 ±1.0 ±1.6 

throughout entire 3.00 3.09 0.6 6.6 7 4 10.48 11.42 10.95 652.9 650.0 651.4 
length ±0.03 ±0.06 ±0.66 ±0.3 ±0.5 ±2.0 

5.01 5.16 2.2 5.7 4 0 10.94 11.06 704.8 705.6 
±0.10 ±0.27 ±0.8 ±1.2 

610 .LC Hollow Intact: No fractures 1.01 1.21 0 .5 8.4 7 6 10.03 10.28 10.16 605.8 606.9 606.3 
±0.09 ±0.06 ±0.18 ±1.2 ±0.7 ±1.0 

3.00 3.60 0.4 8.5 12 8 10.51 10.90 10.70 668.4 668.2 668.3 
±0.04 ±0.08 ±0.28 ±0.7 ±1.2 ±1.0 

5.00 6.00 0.9 6.1 6 5 10.51 11.04 10.88 731.0 730.0 730.5 
±0.04 ±0.09 ±0.37 ±0.4 ±0.9 ±0.7 

""" ~ c..l ...... 
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TABLE 2 (continued) co 
C;) 
~ 

Sample No. of aT a-fl l arr Slope T O a-fl Intercept, 
Min. Max. Pointst °C/ kb °C 

Run Core P* , (P)t, rrt, rrt, 
No. Axis Type Final Condition kb kb kb kb {J-+a a-+{J {J-+a a-+{J Mean§ {J-+a a-+{J Mean§ 

603 b lie Solid· Divided in two by 3.00 3.00 0.3 11 .0 11 9 4.72 4.90 4.81 648 .7 650.8 649.7 
horizontal break, ±0.02 ±0.02 ±0 .13 ±0.4 ±0.8 ±1.5 
fractures at top 
and bottom 

595- lie Hollow· Intact: Fractures 2.00 2.08 0 .6 9.2 14 12 4.68 4.92 4.80 625 .6 627.0 626.3 
596b ±0.02 ±0.02 ±0.17 ±0.4 ±0.2 ±1.0 

3.01 3.13 1.1 6.8 6 4 4.90 5.49 5.20 651.5 651.2 651.3 
±0.07 ±0 .02 ±0.42 ±0.7 ±0 .2 ±0.5 

4 .00 4 .16 0 .3 1.6 4 0 5.07 5.19 678.9 679.7 
±0 .33 ±0.41 ±0.7 ±1.1 0 

607 0 Solid Intact: No 1.01 1.01 0 .8 7.7 11 11 7 .02 7 .37 7.20 599.8 601.8 600 .8 0 

fractures ±0 .04 ±0.06 ±0 .25 ±0.7 ±0.8 ±1.4 t.x:l 

3. 00 3 .00 0.4 8.9 10 9 7 .30 7 .35 7.32 653.4 655.9 654.5 ~ 
±0 .03 ±0.04 ±0 .04 ±0.5 ±0 .7 ±1.8 t;; 

606 0 Hollow Intact: No 1.00 1.04 0.5 7.1 8 8 7 .30 7.32 7. 31 601 .0 602.4 601.7 '"tI 
fractures ±0.04 ±0.02 ±0 .03 ±0.4 ±0 .3 ±1.0 

~ 3.00 3.12 0.4 7.3 8 7 7.41 7 .33 7.37 655.0 656.9 655.9 
±0.04 ±0 .04 ±0.06 ±0.5 ±0 .4 ±1.3 f;5 

598b r' Solid Intact: Bottom 3.01 3.01 0.7 6.5 14 7 8.73 9.45 9.09 649.5 646.2 647 .8 0 
densely fractured ±0 .07 ±0.21 ±0 .51 ±1.0 ±2.7 ±2.8 Z 
(ini tially one 
nat ural fracture) 

Notes. 
• Hydrostatic confining pressure exerted within bomb by compressed argon. 
t Calculated mean pressure in sample. For solid samples (P) = P, but for hollow samples (P) "" P(b2 j b2 - a2 ), where 2b and 2a are the outer and inner 

diameters of the bounding cylinders (see Appendix A). 
t The minimum and maximum compressive stresses applied above the hydrostatic pressure and the number of passages made through the transition in 

determining the line dividing the a- and {J-quartz fields. In this table, rr > 0 for compression. 
§ Mean slope and intercept are found by averaging the results obtained by pa-ssing from {J -+ a and from a -+ {J. Uncertainty listed is either the standard 

deviation of the mean or the combined standard deviation of the individual determinations, whichever is larger. For those runs in which data were gathered 
only for the (3 -+ a passage, the 'mean' slope and intercept were estimated by a method described in the text. 

G Earlier model of load cell. 
b Triplet of O.OS-cm thermocouples. 
• Better finished sample. 
d Same core as 590 but ground shorter to 1.6 cm. 

,~ 
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TABLE 3. Average Slope of Phase Boundary for Various Orientations of the Crystal to the Axis of 
Compression 

Selection of Data 

All 
Excluding runs 580 & 590 
P = 3 kb 

..LG 

10.3 ± 0.7t 
10.6 ± 0.4 
10 .6 ± 0.4 

* u > 0 for compression in this table. 

aT a-/liau*, °C/kb 

IIG 

5.0 ± 0.3 
5.0 ± 0.3 
5.0 ± 0.4 

o 

7.3 ± 0.1 
7.3 ± 0.1 
7.3 ± 0.1 

9.1 ± 0 .5 
9 . 1 ± 0.5 
9.1 ± 0.5 

t The uncertainty listed after each slope is either the standard deviation of the mean calculated from 
the different slopes, s.d. = 0::::. [(aT / au), - «aT/au))p!n - 1)1/2 or the average standard deviation 
calculated from the individual standard deviations of the slopes, s.d. = 0:, (s.d.),2In)I/., whichever is 
larger. 

phine twins. The standard deviation of the 
mean of the slopes for a given orientation, how­
ever, is not seriously large. 

4. There is clear indication of a hysteresis 
in the a-{3 transition, for the {3 ~ a boundary 
is systematically lower than the a ~ {3 bound­
ary for all orientations and conditions of stress. 
Giving more emphasis to lines that are more 
nearly parallel and more precisely determined 
by the experimental points, a weighted mean 
value for the hysteresis at zero compressive 
stress is estimated to be 1.6 ± 0.9°C. This is 
consistent with the 1°-2°C observed by Keith 
and Tuttle [1952] in homogeneous single quartz 
crystals at atmospheric pressure. (In estimat­
ing the mean intercepts in Table 2, 0.8 ± 
0.9°e has therefore been added to Tp_>. ° for 
those few runs in which the a ~ {3 phase 
boundary was not determined.} 

By far the most interesting result of this 
study is that the slope of the phase boundary 
aT._plau depends strongly on the orientation 
of the crystal with respect to the axes of com­
pression (Table 3). Regarclless of whether all 
the data at all pressures or selected data at 
P = 3 kb are averaged, the conclusion is essen­
tially the same: the transition temperature is 
raised about 10.6°C for each kilobar of com­
pressive stress perpendicular to the C axis and 
only 5.0°C/ kb parallel to the C axis. 

When extrapolated to zero compressive 
stress, the results of these experiments are in 
good agreement with existing hydrostatic data. 
This is demonstrated in Figure 7, where the 
mean temperature intercept (last column of 

Table 2) is plotted versus hydrostatic pressure 
(or mean pressure for hollow samples, as dis­
cussed later in the text). The least-squares slope 
and temperature intercept of the phase bound­
ary in P-T space are 25.83 ± 0.06°C/kb and 
573.6 ± 1.0o e, which represents an amaz­
ingly good agreement with published values. 
(Klement and Cohen [1968] estimate 26°Cjkb 
and 574°e from their own work, that of Cohen 
and Klement [1967J, and that of others; cf. 

PRESSURE OR MEAN STRESS (kb) 

Fig. 7. Temperature intercepts T._po (obtained 
by extrapolating the a-fJ boundary to zero com­
pressive stress) plotted versus pressure (solid sam­
ples) or mean pressure (hollow samples, see Table 
2, Appendix A, and text). Open symbols are for 
hollow specimens, solid symbols are for solid 
specimens. Orientations are shown by circles 
( 1 G), squares (II G), and triangles (0). Ten points 
are not shown because they are obscured by the 
other points. 
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also Keith and Tuttle [1952J, 573 ± 2°C; 
Yoder [1950J, 29°C/kb; and Gibson [1928], 
21°C/ kb.) If the six points determined with 
the 0.05-cm thermocouples are omitted as being 
less reliable, the values change, and the uncer­
tainty decreases slightly to 25.82 ± 0.05°C/kb 
and 574.4 ± 0.8°C. Taking into account the 
uncertainty in absolute calibration of the pres­
sure and temperature, we feel that the best 
estimates from our measurements are 25.8 ± 
0.3°C/ kb and 574 ± 2°C. 

DISCUSSION 

The results show that the change in transi­
tion temperature due to the addition of com­
pressive stress depends on the orientation of 
the quartz crystal with respect to the compres­
sion axis as well as on the magnitude of the 
stress. In other words, the transition tempera­
ture T._~ can be regarded as a function of the 
compol1ents of stress a'i 0 that 

d'l'a_~ = (
aT a-~) -- . daii == - Mii daii 
aUii tTpEtTij 

(1) 

M .. = - (aT a-~) (2) 
1.J - au if u pdUi i 

where the summation convention over repeated 
indices is implied (i, j = 1, 2, 3) and the sign 
of a<i is positive for tension. Because T._~ is a 
scalar and a<i is a second rank symmetric tensor, 
M <i is a second rank symmetric tensor as well 
[see Nye, 1957]. In the case of hydrostatic 
pressure, da<1 = -dP for i = j and dati = 0 
for i =F j, so (1) yields 

dT a-~/ dP = Mll + M22 + M33 (3) 

In applying general theory to the specific 
situation in quartz, we change the sign con­
vention for convenience so that a is positive in 
compression, choose the tensor reference axes 
x., X" X. to coincide with the symmetry axes 
as in Figure 4, and impose the symmetry condi­
tions of a or f3 quartz. Equation 2 can then 
be written 

M2 = (aT a-~/aa)J.a 

M3 = (aT a-~/alJ")IIO 
(4a) 

Single subscripts are used in (4a) to inrucate 
that the diagonal components of M' I are prin-

cipal values when the normal stresses are ru­
rected perpendicular and parallel to the C axis. 
Because only two of the three principal values 
are unique for quartz, (3) simplifies to 

dT a-~/ dP = 2M} + M3 (4b) 

From our measured values Ml = 10.6 ± O.4°C/ 
kb and M. = 5.0 ± O.4°C/kb (Table 3) we 
obtain an estimate from (4b) of dT.-,/dP = 
26.2 ± 0.7°C/kb, which agrees within experi­
mental error with the value of 25.8 ± 0.3°C/kb 
that we determined directly on the same crystal 
by extrapolating the phase boundaries to condi­
tions of hydrostatic pressure (zero uniaxlal 
stress) for runs at various confining pressures 
(Figure 7). 

Special Aspects of the Results 

The effects of stress inhomogeneities. Non­
uniformities of stress in the specimen would 
smear the transition, and, if the stress were not 
symmetrically distributed about the nominal 
stress calculated from the applied load, sys­
tematic error would result. In all specimens 
stress inhomogeneities could arise from end ef­
fects, but in the hollow specimens we might 
expect additional inhomogeneity not related to 
end effects, because these cores are subjected 
to the confining pressure over the Quter cylin­
drical surface but to only one atmosphere over 
the internal surface. 

The stress rustribution in a hollow cylinder 
of homogeneous, anisotropic elastic material 
having hexagonal or trigonal symmetry arising 
from the application of unequal hydrostatic 
pressures to its inner and outer surfaces does 
not appear to have been explicitly calculated, 
but some of the characteristics of the distribu­
tion would be expected to be similar to the 
case for an isotropic material. In Appendix A 
we calculate the transition temperature at each 
point in such an isotropic, homogeneous speci­
men by summing the effects of the three prin­
cipal stresses. We find that T._~ would vary 
over the circular cross section of specimens of 
all orientations except II C (in which there 
would be no variation) in a symmetrical man­
ner about a mean value that would be the 
transition temperature for a solid specimen of 
the same orientation subjected to a confining 
pressure equal to the mean stress in the hollow 
specimen. The magnitude of the predicted varia-
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tion is significant, because for the specimen of 
run 610 (Table 3), in which the hole was 0.4 
cm and the confining pressure was 5 kb, the 
total variation calculated is 67°C, and, even 
within the least affected 50% of the specimen, 
Ta_~ should vary by 13°C about the mean. 

In the actual experiments, however, the 
transition in hollow specimens was just as sharp 
as in solid specimens and occurred precisely at 
the symmetric mean of the predicted range of 
transition temperatures. The explanation prob­
ably lies in a 'focusing' effect brought about by 
the dramatic increase of compliance in quartz 
as the transition is approached. This can be 
seen by assuming that the specimen is inhomo­
geneous in elastic properties near the transition, 
so that the above stress analysis is not valid. 
This is probable because the carbide endpieces 
at each end of the specimen are elastically 
much stiffer than the quartz, constraining each 
elementary column of the specimen parallel to 
the cylindrical axis to be of essentially the 
same length. As the specimen is squeezed to­
ward the transition from the f3 field, those 
columns with highest Ta_~ become more com­
pliant than the rest of the crystal. Hence they 
support less of the applied load and also de­
form in the cross-sectional plane such that the 
stress difference is reduced, thereby slowing 
their rate of approach toward the transition. 
The columns with the lowest Ta_~ support pro­
portionally more of the load and a greater 
stress difference in the cross-sectional plane, so 
that their rate of approach toward the transi­
tion is increased. The two effects converge, and 
the transition finally occurs when the increas­
ing load has raised the mean Ta_~ to the con­
stant temperature of the specimen. 

A similar 'focusing' effect will arise if the 
transition is approached from the IX field by 
decreasing the load or if it is approached from 
either field by changing the temperature while 
either the load or the length is held constant. 
An exact calculation has not been carried 
through because of its difficulty, but intui­
tively this explanation of the sharpness of the 
transition in the hollow specimens seems con­
vincing because the increase in compliance in 
the neighborhood of the transition is in fact 
very large. 

In both solid and hollow specimens, stres!> 
inhomogeneities will arise from frictional con-

straints at the ends (which tend to cause bar­
relling) and from eccentric loading and aniso­
tropic response of the crystal (which tend to 
cause bending). The maximum stress difference 
in the specimen due to bending can be estimated 
to be 150 bars per kilobar of compressive stress 
applied, assuming all the bending to be ab­
sorbed by the specimen. In fact, the piston 
assembly is not rigid compared with the speci­
men; it will absorb about half the bending. 
Also, this estimate is the maximum variation 
over the whole specimen; in the central two­
thirds of the specimen the variation is about 
one-third of the total. Finally, the 'focusing' 
effect discussed above with respect to hollow 
specimens would further reduce any smearing 
of the transition, because the stress inhomo­
geneities due to bending would approximately 
average to zero over the cross section of the 
specimen. On the other hand, the stress in­
homogeneities due to the frictional constraints 
at the ends would not average to zero over the 
cross section, and, if a limited and variable 
amount of slipping between the quartz and the 
carbide endpiece is supposed, some of the scat­
ter of results both within a run and between 
runs may be qualitatively accounted for. When 
the percentage of the whole specimen that 
might be affected by the frictional constraints 
is estimated, however, it would appear that the 
quantitative effect must be small. Thus we feel 
that it is unlikely that our results have been 
significantly biassed by stress inhomogeneities 
in the specimens. 

Apparent anomaly in the 0 and r' specimens. 
Because the two principal values of M" (equa­
tion 2) corresponding to the two principal 
directions perpendicular to the C axis are equal, 
it follows from the transformation properties 
of tensors [Nye, 1957, p. 11] and from our 
experimental results that the component M3;J' 
along any direction at 45° to the C axis should 
be given by 

HIO.6 ± 0.4 + 5.0 ± 0.4) 

7.8 ± 0.3°C/kb 

From Table 3, however, we see that the two 
different orientations at approll.1.mately. 45° 
yielded different values: M .. ' is 7.3 ± O.I°C/kb 
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for the 0 orientation and 9.1 ± 0.5°Cjkb for 
the r' orientation. The average value is 8.2 ± 
0.5°Cjkb, in better agreement with the value 
predicted from M, and Ma. 

An analogous inconsistency is exhibited by 
the ,8-quartz compliances s • .' measured for these 
orientations (Table 1), which differ by a, com­
parable amount despite the fact that symmetry 
requires that they should be equal. The ratios 
of Ma.' to sa.', however, are more nearly equal 
for the two orientations, suggesting that per­
haps both sorts of discrepancies arise from a 
common cause. 

One possibility is that these inconsistencies 
may arise from the anisotropic response of the 
crystal to uniaxial loading in these directions. 
Both orientations have the property that the 
application of a uniaxial stress fI",,' results in 
shear strains that are resisted by the stiff car­
bide endpieces, so that other componen'ts of 
stress must be present. (This is not true in the 
case of the IIC orientation nor, in the ,8 field, 
for the -1 C orientation.) The exact effect on 
the compliance and the slope of the transition 
measured in these orientations is not calculated 
because we do not have the detailed knowledge 
of the boundary conditions that is necessary. 

Yet another possibility is that the Dauphine 
twinning thought to occur near the transition 
might influence the results differently for differ­
ent orientations. Experiments of Thomas and 
Wooster [1951J indicate that the effect of uni­
axial stress on the r' cores would be to tend 
to untwin them, whereas there is no such effect 
for the cores of 0, -1 C, and II C orientations. 
Maximum estimates of the energy that could 
possibly be required to form the twin bound­
aries, however, suggest that any associated ef­
fect on latent or specific heat is probably too 
small to account for the inconsistencies in the 
slopes of the specimens oriented at 45° to the 
C axis. 

Thus, we cannot be sure of the source of 
these discrepancies, just as we cannot be sure 
why in a single run (iJT/iJfI)._>, is usually 
greater than (iJT/ iJfI),_>. and why the mean 
slopes for a given orientation scatter as much 
as they do. It seems possible that some of these 
inconsistent features are related in origin, but 
more experimentation would be required to be 
sure. A promising experiment would be to cross 
the transition in extension (by lowering the 

axial principal stress below the confining pres­
sure), for the effects of some of the mechanisms 
that might be causing discrepancies would be 
expected to be of opposite sign in extension 
from those in compression. The study of these 
details would certainly be of interest, but we 
feel that our important average results are 
probably correct within the uncertainties esti­
mated from the scatter. 

The a-,8 Inversion Treated as a A Transition 

By a A transition we shall mean one in which 
the volume V and entropy S vary continuously 
across the phase boundary while the pressure 
and temperature derivatives of V and S (com­
pressibility ,8T, thermal expansion a, specific 
heat Cp ) become infinite there. Pippal'd [1956, 
1957J derived two relations that, he showed, 
asymptotically define the slope of the phase 
boundary dT,jdP as the transition boundary is 
approached closely enough so that a 'cylindrical 
approximation' represents the actual variation 
of the entropy and volume: 

as T ~ T). (5) 

{3T ~ (dT)./ dP)a (6) 

These relations have been obtained more simply 
and without reference to any geometrical pic­
ture by Buckingham and Fairbank [1961], with 
the advantage that the requirements sufficient 
to ensure the validity of the Pippard relations 
have become clearer [Klement and Cohen, 
196 J. The application to quartz was first made 
by Hughes and Lawson [1962J, who showed 
that measurements of thermal expansion and 
compressibility by Mayer [1960J yielded a 
dTx/dP consistent with experimental values 
in (6), whereas Mayer's data for thermal ex­
pansion and specific heat measurements by 
Moser [1936J did not yield a consistent value 
in (5). 

If a A transition occurs under Donhydrostatic 
stress, then the components of strain {" and 
the entropy vary continuously across the phase 
boundary while some of the derivatives with 
respect to the components of stress fI .. and 
temperature T, (isothermal compliances 8" .. "', 

linear thermal expansion coefficients a,,, specific 
heat at constant stress Cv ) become infinite at 
the boundary. Garland [1964] generalized the 
PippaI'd relations in terms of principal axes of 
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stress. It is easy, however, to write down the 
nonhydrostatic Pippard relations for arbitrary 
axes by the method of Buckingham and Fair­
bank [1961], as set out in Appendix B. These 
lead to the following asymptotic relations: 

as T --7 Tx 

as T --7 Tx 

(7) 

(8) 

where - Mkl is the slope of the phase boundary 
in the CTkI - T plane (aT ... / aCTkl).>,nu the sign 
of CTkl following from the usual convention that 
tensional stress is positive. 

Garland, also using the thermal expansion and 
compliance measurements of Mayer [1960] , 
found that (8) yielded a best average M, ~ 
10°C/ kb and, less convincingly, M. ~ 6°C/ kb 
approximately 5°C/ kb is obtained if the data 
nearest to the transition are retained). The dif­
ference between these estimates and our direct 
measurements of MI = 10.6°C/ leb and M3 = 
5.0°C/ kb may not be significant because of the 
differences in experimental material and the 
difficulty in matching the absolute temperatures 
accurately enough near the transition for the 
thermal expansion and compliance measure­
ments. Another problem is that the conversion 
from the adiabatic compliances of Mayer to 
isothermal values involves the specific heat, 
which requires data from another investigator 
on yet a different specimen of quartz. Near the 
transition the difference between adiabatic and 
isothermal compliances becomes significant, so 
that compatibility of the data is a crucial re­
quirement in evaluating the asymptotic limits. 
That the specific heat data of Mosel' [1936] 
and the thermal expansion data of M aye/" 
[1960] are not compatible is shown by the fact 
that consistent values of M

" 
M s, and dT,jdP 

are not obtained in (7) [Garland, 1964] and 
(5) [Hughes and Lawson, 1962J, respectively. 

Both Garland's and our own values of MI 
and M3 satisfy the constraint (4b) within experi­
mental error. Garland showed, however, that if 
C./ T is eliminated from (7) another important 
constraint on the values of M, and M. is ob­
tained asymptotically from al and a. (Blla, 
Appendix B): 

(9) 

The evaluation of this limit appears to be free 
of many of the difficulties discussed above, be-

cause the independent measurements of Mayer 
[1960], Coenen [1963], and Berger et al. [1966J 
on different specimens of quartz all convincingly 
agree that aJa. = 1.68 ± 0.04 throughout the 
temperature range 100° to 570°C (Figure 8). 
Moreover, Coenen and Berger et al. used X-ray 
techniques in which al and a. are determined 
simultaneously over the same portion of quartz, 
thus eliminating possible errors in aI/ a . due to 
differences of material within the same specimen 
and inconsistences in temperature measurement. 
If this value of a,/ a. = 1.68 that holds between 
100° and 570°C is the true limit at the transi­
tion (T ~ 574°C), then Garland's MJM. ~ 
10/ 6 ~ 1.7 is consistent with equation 9 and 
our value of MI/ M. = 2.1 ± 0.2 is not. 

There are similar sorts of asymptotic con­
straints on M J M3 that are imposed by pairs 
of components of the isothermal compliance 
tensor Silk." as the boundary of a A. transition 
is approached (Bllb, Appendix B). Klement 
and Cohen [1968] showed that plotting the 
adiabatic compliance components for quartz one 
against the other should yield the same asymp­
totic limits as with the isothermal compliances 
as long as the relation aJ a. = 1.68 held, which 
enables one to use the dynamic data directly 
without introducing the uncertainty of the 
specific heat by converting to isothermal values. 
Even so, however, a convincing estimate for 
M.,/M. is not obtainable from the asymptotic 

10 

, a3=a,).68 u 
~ 

a 
x 5 

?:t 

Fig. 8. Linear thermal expansion coefficients of 
quartz parallel (as) and perpendicular (a,.) to the 
C axis. Numbers beside the points are tempera­
tures in degrees C. From 20°C to 570°C the data 
fits a straight line through the origin: as = a,l 
1.68. Data are from Mayer [1960]. 
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behavior of the presently available dynamic 
compliance data. The linear asymptotes found 
by Klement and Cohen and others found by us 
agree a little better with a value' of M,IM3 of 
1.7 than 2.1, but the variation among the in­
dividual estimates is large. What is worse, al­
though the 'straight' portions of the graphs 
start 20° to 50°C below the transition, the 
value1l within 4° or 5°C of the phase boundary 
often depart significantly from these lines. 

A set of static determinations of su" and 
S33" through the transition were made by Perrier 
and de Mandrot [1923J in a series of careful 
experiments involving the bending of quartz 
beams. These yield an asymptotic estimate of 
M,IM. between 2.0 and 2.2 in (Bl1b) for the 
temperature interval from 545° to 574.5°C. 
Their static method has the virtue of producing 
isothermal values directly, but their compliances 

at temperatures near the transition are open to 
question because the inhomogeneous state of 
stress in the bent beams of quartz would cause 
the apparent compliance to exceed its true value. 
The overestimate would be greater for su" than 
for 8aa", resulting in an overestimate of M,I M3 
from(Bllb), but an approximate calculation 
shows that the magnitude of this increase 
would be less than 5% for all temperatures 
more than 3°C below the transition tempera­
ture. Thus the discrepancy between the asymp­
totic estimates of M,jM3 from dynamic and static 
compliances is not easy to explain away. Cady 
[1964J mentions small systematic differences 
between dynamically measured compliances of 
quartz corrected to isothermal values and stat­
ically determined compliances (both at room 
temperature). Perhaps such differences are real 
and arise from a mechanism that becomes much 
more significant near the transition. 

Thus, considering the uncertainty of the ther­
modynamic data near the transition, we might 
regard our experimental values of M, and M3 
as sufficiently consistent with the asymptotically 
estimated values of Garland [1964J to provide 
support for the hypothesis that the a-f3 inver­
sion is a ,.\ transition, except for the fact that 
the ratio M,jM. = 1.7 predicted by the same 
hypothesis from the much more accurately 

known ratio of the thermal expansions is in 
significant conflict with our directly measured 
value of 2.1 ± 0.2. There are several possible 
ways this discrepancy might be explained: 

1. We might have overlooked a serious source 
of systematic error in our experiments. This 
seems unlikely because the errors in M, and M 3 
would have had to be positive and negative, 
respectively, in just such a way that the con­
straint (4b) remained valid. 

2. The difference might be due to the effect 
of pressure, because our measurements centered 
around 3-kb confining pressure whereas the data 
used to evaluate the asymptotic limits in (9) 
were for 1 atm. This seems unlikely for the 
same reason that is given immediately above 
and also because direct calculation shows that 
the ratio a,l a. should not be very sensitive to 
pressure. That is, · 

as calculated from rates of change of the adia­
batic compliances of Mayer [1960J at 1 atm 
and converted to isothermal values using a,l a. = 
1.68. 

3. The data might be too far from the transi­
tion for the correct asymptotic limit to be de­
fined. For example, equation 6 only begins to 
display the expected asymptotic behavior in 
liquid helium about 0.01 OK from the ,.\ transi­
tion at 2.2°K [Buckingham and Fairbank, 
1961]. If, however, this is the root of the dis­
crepancy, it means that the remarkably con­
sistent linear relation a,ja3 = 1.68, which holds 
from 100° to 570°C, must cease to be valid 
somewhere between 570° and 574°C and a 
limiting value of 2.1 must be approached. 

4. The asymptotic behavior on approaching 
the transition might vary from crystal to crys­
tal. This is supported by the variability of the 
DTA signals reported by Keith and Tuttle 
[1952J and by the variability of the rate of 
increase of Dauphine twins observed by Young 
[1962, 1964J, but it is contradicted by the 
consensus of several independent studies that 
a,ja3 = 1.68 and by the relatively good agree­
ment among the experimental determinations of 
dT._pldP. If the Dauphine twinning reaches a 
maximum before the a-f3 transition proper, it is 
possible that the asymptotically derived values 



THE 0I-{3 INVERSION IN QUARTZ 4939 
of Ml and M3 are influenced by this phenome­
non. 

5. The transition might actually be marked 
by a small first-order change in entropy, volume, 
and some of the components of strain, so that the 
derivatives of these quantities on approaching 
the transition might never get large enough to 
rigorously satisfy the asymptotic relations de­
rived for a ,\ transition (see Figure 9). This 
hypothesis is supported by the existence of 
hysteresis in the transition, for if there were a 
continuous series of states in which quartz were 
stable as the phase boundary was traversed, it 
is difficult to see how there could be any 
hysteresis at all. 

This hypothesis is further supported by the 
character of the DTA peaks observed when 

a-QUARTZ 
> 

I 
I 

I 

squeezing the specimens through the transition 
(see section on experimental procedure). If the 
a-f3 inversion were a ,\ transition, then the 
cause of the DTA peaks would be the sudden 
increase of heating due to compression as the 
transition was approached and crossed. The in­
crease in temperature under adiabatic conditions 
owing to compression perpendicular or parallel 
to the C axis differs, however, so that the ratio 
of the two effects is given by 

= TVal/TVa3 = al 
C" C. a3 

yet we could not distinguish any systematic 

'\ 
2 

~-QUARTZ 

-

V 
~ transition 

L_---~- - region -

T or p 
Fig. 9. Two models for the a-fJ inversion in quartz, which differ only in the behavior of 

the extensive parameters as a function of the intensive parameters near the transition: in 
(I), a A transition, the variation is continuous and a vertical tangent occurs at the transition, 
whereas in (2), the model we prefer, a first-order discontinuity terminates the rapid rate of 
change of V and S at the transition before a vertical tangent is reached (case 5 in text). 
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difference in DTA peak height for the two orien­
tations. It is unlikely that a compensating direc­
tional anomaly in the thermal conductivity of 
quartz, even if it existed, could obscure any 
significant directional difference in heat effect, 
because it is probable that heat generated in 
the specimen would be conducted away both 
radially and longitudinally under our experi­
mental conditions. If the transition were first­
order, however, then a latent heat would be 
released as the specimen was squeezed through 
the transition, and this heating would not de­
pend particularly on the orientation of the crystal 
to the compression. Another pair of observa­
tions, that the height of the DTA peak was not 
affected by the fivefold range of squeezing rate 
used in these experiments, whereas the position 
of the peak lagged slightly behind the compli­
ance maximum at the highest rate, might also 
be explained by assuming that the hysteresis 
holds up the first-order transition so that the 
latent heat is released more suddenly when it 
finally occurs. 

In conclusion, we tend to favor the last .of 
these possibilities, but to prove or disprove this 
and to resolve the many troubling conflicts 
touched upon earlier, higher quality measure­
ments of a'J, Slju" (by both static and dynamic 
means), Cp , and M", on the same crystal and 
very near the transition will probably be needed. 

The a,-f3 Inversion Treated as a Coherent 
First-Ordel' Transition 

We gave indirect reasons above that suggest 
to us that the a-f3 inversion may involve a 
small first-order component, Some workers ac­
tually claim to detect discontinuities in the 
volume and entropy at the transition, but these 
are difficult to establish on account of their 
small magnitudes and the rapid rate of change 
of these quantities in the neighborhood of the 
transition. Thus, Majumdar et 01. [1964] give 
AV ~ 0.11 ± 0.Ql5 cm"/mole and As ~ 0.10 ± 
0.02 cal/mole °C, which, when substituted into 
the Clapeyron equation 

dT a-ti dP = AV/ AS (10) 

yield an estimate for the slope of 26 ± 6°C/kb, 
whereas Berger et 01. [1965, 1966] give AV ~ 
0.15 ± 0.01 cms/mole and As ~ 0.15 ± 0.04 
cal/mole °C, which yield an estimate of 24 ± 
6°C/kb. On the other hand, Sinel'nikov's [1953] 

upper bound of 0.003 cal/mole °C for As would 
imply Av no larger than 0.0033 cma/mole to 
yield the experimentally observed slope of 
26°C/kb from (10). It is difficult to resolve this 
and other inconsistencies of the data in the 
literature. 

We shall assume the transition is first-order, 
however, and that it is characterized by a re­
versible first-order discontinuity in the strain 
that we call the transformation strain. As 
pointed out in the Introduction, this latter fea­
ture is tied to the notion that the transition 
mechanism involves a coherent interface between 
the two phases, so that the displacement vector 
for the quartz as it undergoes the phase trans­
formation is a continuous function of position. 
If the tran formation strain A€u is small enough 
so that the approximations of infinitesimal 
strain theory are valid, the generalization of the 
Clapeyron equation applicable to the transition 
is (equation C6, Appendix C) 

= Vo AEkl/ As (11) 

where Vo is the molar volume in the reference 
state of strain and As is the entropy per mole 
associated with the transition. 

As shown in Appendix C, (11) is in direct 
analogy to the formulas (7) and (8) for the 
slope of the boundary of a A transition j more­
over, it reduces to the conventional Clapeyron 
equation (10) for hydrostatic pressure. In the 
general case of non hydrostatic stress, (11) shows 
that shear stresses will be important thermo­
dynamic variables in determining the field of 
stability of a polymorph, if A€u includes sig­
nificant shear strains. In fact, if the transforma­
tion strain involves a change in shape but not 
of volume, the transition temperature will be 
independent of pressure but not of the indi­
vidual components of stress. 

Applying (11) to quartz and choosing the 
coordinate axes as in Figure 4, we obtain ex­
pressions for the increase of transition tempera­
ture owing to compression perpendicular or 
parallel to the C axis, respectively, in terms of 
the relative discontinuity of the lattice param­
eters Aa/a or AC/C in the same direction: 

Ml = VO AEt! As = vo(Aa/ a)/ As (12a) 

Ma = Vo AEa/ As = vo(!l.c/c)/ As (12b) 
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Just as in the hydrostatic case, the scatter in 
the experimental data makes the testing of (12a) 
and (12b) unsatisfactory. Using values of 
l1a/a ~ 0.0027 ± 0.003, I1c/ c ~ 0.0012 ± 
0.001, and I1s ~ 0.15 ± 0.04 caI/mole °C of 
Berger et al. [1965, 1966J leads to M, ~ 9.7 ± 
2.7°C/kb and M. ~ 4.4 ± 1.2°Cjkb, which 
are very roughly the same as our experimental 
values, but the uncertainty is great and be­
comes even greater if attempts are made to 
combine the data of other workers. 

In a manner completely analogous to the 
discussion of the a-(3 inversion as a ,\ transition, 
we can avoid the large uncertainties in the value 
of I1s by eliminating it between (12a) and 
(12b), yielding 

The X-ray data of Berger et al. yield M,/ M3 ~ 

2.2 ± 0.3, which is in decent agreement with 
our directly measured value of 2.1 ± 0.2, but 
the dilatometric studies of Mayer [1960J yield 
M,/ M. ~ 1.7. There is no way to decide with­
out further experiments whether this discrep­
ancy arises from experimental errors or real dif­
ferences in the material studied. 

Summary 

The change of the temperature of the a-(3 
inversion in quartz with hydrostatic pressure or 
with general stress that we measured directly 
in our experiments can be interpreted equally 
well by assuming the inversion to be a >.. transi­
tion or a coherent first-order transition. For 
reasons discussed above, we favor the first-order 
interpretation and suggest further that the 
asymptotic limits required by the >.. transition 
hypothesis may not be rigorously attained 
(Figure 9). 

GENERAL COMMEN'l.'S 

The class of phase transitions that has been 
described by Buerger [1951J as displacive is cer­
tainly coherent in the sense used in this paper. 
These are generally characterized by being rapid, 
reversible, and involving relatively minor struc­
tural reorganization at the atomic leveL Another 
example for which an interpretation similar to 
that for the quartz inversion is suggested is the 
1X.-(3 transition in AlPO" which, according to 
Troccaz et 01. [1967J, is completely analogous 

to the 1X.-(3 transition in quartz. Assuming this 
transition is a coherent first-order one, and 
using their values for l1a/ a and I1c/ c in (13), 
we find M,/M. ~ 8.2. If we apply the>.. transi­
tion formula (9), however, and use the slopes 
of the steepest parts of the thermal expansion 
curves for a and c which they measured just 
before the supposed first-order discontinuity 
from the IX. to the (3 phase, we find M,/ M. ~ 2. 
This significant discrepancy can be explained by 
assuming the asymptotic limit required in (9) 
is never reached. If their measurement of I1s is 
valid, then the first-order theory further pre­
dicts M, ~ 16.5°C/kb and M. = 2.0°C/ kb 
from (12a) and (12b) and dT._p/dP = 35°C/kb 
from (4b). We do not know of any direct meas­
urement of these quantities for AlPO •. 

Besides the displacive, martensitic, and twin­
ning type of crystallographic transformations, 
it is interesting to speculate whether other more 
sluggish transformations may also occur co­
herently. This mode of transformation requires 
that diffusion be suppressed and thus is more 
likely the more rapidly it can occur. Under dry 
conditions at sufficiently low temperatures, 
however, a slow coherent mechanism may pos­
sibly be favored over a reconstructive one that 
requires significant diffusion. As long as the 
phase change is characterized by a reversible 
transformation strain that involves a significant 
change of shape as well as of volume-no matter 
whether it is rapid or sluggish-the stability 
fields of the polymorphs must depend on the 
shear stresses as well as on the hydrostatic 
pressure. This is a thermodynamic effect, differ­
ent from any catalytic effects of shear stress on 
reaction rates and may throw light on the issue 
of stress-sensitive minerals which has appeared 
intermittently in the geological literature for 
many years. 

APPENDIX A 

Temperature smearing in homogeneous, iso­
tropic, hollow specimens. If we choose cylin­
drical coordinates with z axis along the core 
axis, it can be shown [Timoshenko and Goodier, 
1951, p. 59J that when the specimen is sub­
jected to a hydrostatic pressure P on its outer 
surface ( r b), zero pressure on its inner 
surface (r = a), and an extra uniaxial com­
pression (] > 0 along the axis, the resultant 
nonzero components of stress are 
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Fig. lOa. Lines of equal ATp == T._, (r, 8) - (Tp) plotted on the cross section of a hol­
low specimen oriented 1. C (equations A3 and A4, Appendix A). ATp is the increase in transi­
tion temperature (above the mean transition temperature (Tp», owing to the stresses caused 
by the external pressure P. . 

rT" = - Q(l - a2jr2) 

rTu = - Q(l + a
2 N) (AI) 

rT .. = -Q - rT 

Where Q is the equivalent hydrostatic pressure 

Q == PWjb2 
- a

2
) (A2) 

(AI) shows that although the stress depends 
on r in the r - 8 plane, the mean pressure 
arising from P is constant at each point in the 
crystal and equal to the equivalent hydrostatic 
pressure Q: (P) = (-0'" -rT •• -0' .. )/3 = Q. 

Transforming (AI) for a specimen cored ..lC 
to rectangular axes in which X. lies along the 
core axis and assuming hexagonal or trigonal 
symmetry (M. = M.) so that (4a) T._, ~ 
To - M.(rTll + 0'22) - M.rTS3, we find (Figure 
lOa) that the transition temperature that re­
sults from the external pressure alone varies 
with rand 8 and is given by 

T a-~(r, 8) 

~ (Tp) + Q(MI - Ma)(a2jr2) cos 28 (A3) 

where 

(A4) 

is the mean increase of transition temperature 
above the value at zero P and 0' (To ~ 574°C) . 

A hollow specimen with axis II C, however, would 
have a constant transition temperature T._, = 
(Tp), given by (A4), because the component of 
M~, along any direction in the r - 8 plane is 
constant (M. = M.). 

Integration of (A3) over the specimen (Fig­
ure lOa) shows that the proportion of the 
specimen that is significantly affected depends 
on the size of the hole as well as on the external 
pressure. The results are expressed in Figure 
lOb, which shows that for most of the hollow 
specimens (in which a ~ 0.175 cm and b ~ 1.0 
em and P ~ 3 kb) I T._, -(Tp)1 < 3.3 °C for 
50% of the volume. For the sample of run 610 
(Table 2, a ~ 0.4 cm, b ~ 1.0 cm, P = 5 kb) 
the effect is larger: within the least affected half 
of the sample T._, varies by l2.8°C about the 
mean (Tp). 

As discussed in the text, the absence of this 
predicted smearing of the transition tempera­
ture is the basis for our believing that stress 
inhomogeneities that average to zero over the 
cross section of the specimen are effectively 
removed as the transition is approached by a 
'focusing' mechanism arising from the large in­
crease in the compliance of quartz. 

ApPENDIX B 

Slope of ph~e boundary for ..\. transitions 
under conditions of nonhydrostatic stress. We 
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assume that the entropy and the components of 
strain of the material all depend on the tem­
perature and the components of stress. Then 
the variation of entropy S will be given by 

(as) (as) dS = - dT + - -dui; 
aT a a a,; a" a'i.T 

(B1) 

where the subscript a means all components of 
stress are held constant, the subscript U =F a'l 

means all stress components except the one 
particular a'l are held constant, and the sum­
mation convention is used, so the last term 
stands for nine terms. The transition tempera­
ture TA is a function of the components of 
stress, and it is useful to introduce in the 
manner of Buckingham and Fairbank [1961] an 
auxiliary variable t = T - TA• If we divide 
both sides of equation Bl by dUk., holding all 
the other components of stress and t constant, 
we find 

(asjaUk/)a ....... = (as/aT)iaT/auu) ..... , .• 

+ (as/aUkl) ... a ... T 

Applying the Maxwell relation [Callen, 1960, 
p.225] 

(as/aUkl)a .. a ... T = V(aEkI/aT)a 

and rearranging, we obtain one of the gen­
eralized Pip pard relations 

_1,0 

100 

_o.S 0.0 

RElATIVE CHANGE IN TRANsmON TEMPfRATURE 

Ta-p- T p 

Q ( M,-M,) 

-

10 

Fig. lOb. Amount of sample in volume per cent 
in which the transition temperature T._p varies 
symmetrically by a given amount about the mean 
transition temperature (Tp). Absciilsa is plotted 
in relative units so that temperature variations 
can be computed for hollow cylinders of any di­
mensions subjected to any external pressure, using 
Q = P (b2/b' - a2

) and (M, - M.) = 5.6°C/kb. 

Vakl = MkI(Ca/T) + (aSlaukI)........ (B2) 

where 

Mkl - -(:~}# ... , == -(:~:).# .. 
T (as) 

aT a 
and 

-Mk' is the slope of the phase boundary in the 
Uk! - T plane at the point on the boundary 
determined by the state of stress, and Ca, a." 
and V are, respectively, the specific heat at 
constant stress, linear thermal expansion, and 
specific volume of the material in the same state 
of stress and at temperature T. 

Similarly, if we consider the variation of a 
particular strain component e'l in the a.. - T 
plane parallel to the transition boundary (t = 
constant), we find the other generalized Pip­
pard relations 

Siik/ = Mk1a'i + (aE,;/aUkl)a"al' .• 
where 

is the isothermal compliance tensor. 

(B3) 

The hydrostatic Pippard relations can be 
obtained from these equations. Setting i = j in 
(B2) and summing yields 

Va = (aT/ap), (Cp/ T) - (as/ap). (B4) 

whereas summing (20) over all i = j and all 
k = l yields 

f3T = (aTjap). a - (1/ V) (a v/ap). (B5) 

In these equations III is the volumetric coefficient 
of thermal expansion and {3'r the volumetric 
coefficient of isothermal compressibility. 

The last term in equations (B2) and (B3) is 
the rate of change of entropy and strain, re­
spectively, parallel to the phase boundary, and 
thus must be finite everywhere on the boundary 
(except perhaps at discrete points). Hence (B2) 
requires that the components of au that are 
nonzero become infinite at the boundary (be­
cause C. becomes infinite for a A. transition and 
M k • is finite) and that the components that are 
zero be matched by zero values for the corre­
sponding components of M k ,. Likewise equation 
(B3) requires that Silk/ becomes infinite at the 
boundary for all values of i, j, k, l such that 

! 
i 
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both a" and Mt , are nonzero. For these cases 
in which 0'0' and S"k'" become infinite on ap­
proaching the transition there will be some 
neighborhood about the boundary in which the 
first and second terms of (B2) and (B3) vary 
much more quickly than the third, so that M .. 
will be given by the limiting slope of Va· .. 
plotted versus C~/T or 8"k,T versus a". We 
symbolize these asymptotic relations by the 
following notation: 

8HU
T 

_ Mk1a,; as T - T), (B7) 

Another important relation that follows immedi­
ately from (B2) is 

(B8) 

If we apply these asymptotic relations to a 
crystal with trigonal symmetry, choosing the 
reference axes for the tensors to coincide with 
the symmetry axes as shown in Figure 4, then 
(B6) yields 

Val - Ml(C~/T) 

Vas - M3(C~/T) 

and (B7) yields 

8uu T == 811 T _ Mla! 

81122 T == 812 T _ Mlal 

81183 T == 813 T _ M3a) 

83333 T == 833 T _ M3a3 

83SU T == S13 T _ lIf,as 

(B9) 

T-T), 

(BI0) 

as T - T), 

1 

1 

1 

1 

can be found in Nye [1957J. Single subscripts 
on second-rank symmetric tensors 0'0' and MOl 
denote principal values.) Equation B8 reduces 
to the important constraint 

as T - T), (BUa) 

There are two nonzero compliance com­
ponents in trigonal crystals that do not enter 
in the asymptotic relations above: su.:} = suT 

and s=/ = suT
• The fact that M .. = 0 means 

that the phase boundary is parallel to the 0'", 

axis, so that dt = dTx = dT = 0 for any du"" 
and (B3) reduces to the definition of compli­
ance. Thus, we would not expect SI/ and suT 

to be infinite at a A transition in trigonal 
crystals. 

Although it is quite uncertain whether the 
ar-(3 transition in quartz rigorously satisfies the 
definition of a A transition, there is no doubt 
that the behavior generally resembles a A transi­
tion, and indeed it seems that S14

T and 8,." 
behave differently from the other compliance 
components of quartz near the transition. Thus, 
both Mayer [1960J and Perrier and de Mandrot 
[1923J report that Su goes smoothly to zero as 
the transition is approached from the a-quartz 
side (of course, Su = 0 for (3 quartz because of 
its hexagonal symmetry), and s .. appears to 
increase less drastically near the transition than 
any of the other four components (Figure 3). 

Hence, from equations B2 and B3 we con­
clude that the following asymptotic form should 
hold for the compliance matrix of a crystal 
when T _ Tx of a A transition that involves 
inversion from trigonal (class 32) to hexagonal 
(class 62) symmetry: 

M31Ml 0 0 0 

M31Ml 0 0 0 

Si; T _ SlI T MaI M\ M3IM! (M3IM,)2 0 0 0 
(BUb) 

0 0 0 0 0 0 as T-T), 

0 0 0 0 0 0 

0 0 0 0 0 0 

(The condensed two-index matrix form of the This matrix, though still consistent with hex-
compliance for crystals of all symmetry groups agonal symmetry, is much simpler than the 
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usual compliance matrix for crystals of either 
symmetry class 32 or 62. 

ApPENDIX C 

Slope of phase boundary for coherent first­
order transitions (assuming infinitesimal trans­
formation strains) under conditions of nO'nhy­
drostatic stress. Let us assume that the 
solid-solid transition is characterized by a small 
reversible transformation strain f:.{<J, so that 
infinitesimal strain theory may be used. In this 
case the volume V never differs much from the 
volume Vo in the reference state of stress and 
strain, so that the elastic work done by the 
applied stresses when the body undergoes a 
small virtual deformation d{<J is [Nye, 1957J 

dW = VoO";; dEij (Cl) 

where summation over repeated indices is under­
stood. 

We now define a thermodynamic potential 
function, which we shall prove has useful ex­
tremum properties at equilibrium under condi­
tions of constant temperature and stress 

G = U - T S - VoO";;E;; + Vo(P) (C2) 

where the mean pressure (P) = (-uu -u". 

-0"33)/3. There are, in fact, many such func­
tions that would serve our purpose, but (C2) 
has the virtue of reducing in the case of hydro­
static pressure to the conventional Gibbs free 
energy G = U - TS + PV. 

The first and second laws of thermodynamics 
and (C1) can be combined to yield 

dU ~ T dS + VoO";; dE;; (C3) 

for any small spontaneous change in the entropy 
and state of strain of the elastic body, where 
the equality holds only when the body is in 
equilibrium. Differentiating (C2) and substi­
tuting (C3), we see 

dG ~ - S dT - VoE;; dUij + Vo d(P) (C4) 

where the equality again implies equilibrium. 
Thus, at constant temperature and stress, G is 
a minimum at equilibrium, because any spon­
taneous change from a non equilibrium state 
entails a decrease in G. Similarily, the chain of 
reasoning can be reversed to show that the first 
and second laws also imply the converse: when­
ever G is a minimum at constant temperature 

and stress, the body is in elastic and thermal 
equilibrium. 

Consider now a situation where n" moles of the 
a phase are in equilibrium with nP moles of 
the (3 phase. This can occur only if G of the 
composite system is unchanged by a transfor­
mation of an infinitesimal number of moles of 
material dnP from the a to the (3 phase. That 
is, dG = g" dna + gP dnP = (gP - gO) dn' = 0, 
which requires that G per mole of a and (3 be 
equal: g" = gPo At a nearby point on the bound­
ary at equilibrium Oa + dO" = gP + dgP, which 
requires that dg" = dgP• Differentiation of (C2) 
yields 

dga = _sa dT - VoE;; a duo; + Vo d(P) 

= -l dT - VoE;/ dCT;; + Vo d(P) = dl 

(C5) 

where s" and sP are the entropies per mole of 
the a and (3 phases, Vo is the volume per mole 
in some convenient reference state (say in the 
a phase), {'/ is the strain in going from the 
reference state to the phase boundary, and {,/ 
is greater than {'/ by the strain f:.€'1 associated 
with the transition. Holding all components of 
the stress constant except u,,' and eliminating 
the common term vod(P) from both sides of 
(C5), we obtain the slope of the phase boundary 
in the Uk' - T plane 

MkI == -(aT a_~/aCTkl).", ... 

= Vo tlEkl/ tls (C6) 

Thus, the increase of transition temperature 
with stress varies for the different components 
of stress proportionally to the corresponding 
component of the transformation strain. 

Note that (C6) reduces to the standard 
Clapeyron equation 10 in the case of hydro­
static pressure (set k = l and sum, with 
duu = dO"". = dU33 = -dP). It is also closely 
analogous to the asymptotic relations derived 
for A. transitions. If the changes f:.s and f:.€kI 

are assumed to occur continuously in a very 
small interval of temperature or stress around 
the transition boundary, we see that an expres­
sion like (7) or (8) can be obtained by dividing 
both numerator and denominator of (C6) by 
either f:.T or f:.u'J, respectively. 

Since deriving equation C6 we have found it 
stated without proof and applied to the transi-
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tion in the indium-thallium alloy system by 
Burkart and Read [1953J, as well as a one­
dimensional form of it used by Flory [1956J 
to deal with a reversible transition in protein 
fibers. A brief derivation is given by Forsbergh 
[1956, p. 357J with reference to the dependence 
of the Curie point on stress in ferroelectrics 
which is valid, even though his statement that 
the generalization of the Gibbs free energy that 
he uses reduces to the standard one for hydro­
static pressure is incorrect (p. 346). 

This treatment of coherent first-order transi­
tions can be compared with other theories of 
nonhydrostatically stressed solids that have 
some features in common. Verhoogen [1951J 
presented a theory in which the chemical 
potential (G per mole) is uniform within a 
homogeneously stressed solid and the orienta­
tion of the phase boundary plays no role in 
thermodynamic equilibrium. These are two of 
the distinguishing characteristics of the above 
development, but his conclusion that it is suffi­
cient to a first approximation to replace P in 
the hydrostatic equations by (P) = {-O"ll - 0"., 

-0" .. ) / 3 in order to deal with a general stress 
is in agreement with our equations C5 and C6 
only in the special case in which the transfor­
mation strain is isotropic (no shape change: 
fl€k' = fl v / 3vo for k = l, fl€,. = 0 for k =;'= l). 

McLellan [1968J distinguished coherent and 
incoherent interfaces in his general treatment of 
phase equilibriums, but he also appears to 
have limited his consideration to isotropic trans­
formation strains. Thus our expression for 
equilibrium between coherent a and f3 single 
component phases related by an infinitesimal 
transformation strain fl€ •• , g" = g' can be 
rewritten 

. [flEi; - Oi;(flElI + flE22 + flEaa)/3] 

(C7) 

where the reference state of stress and strain 
is taken to be in the a phase right at the transi­
tion and 81J is 1 for i = j and 0 for i =;'= j, 
whereas McLellan [1968, his equation 40bJ re­
quires 

ua 
_ T,a + (P)v a 

= uP - Tl + (p)l (C8) 

In general, these two formulations of equilib­
rium are contradictory, but (C7) becomes iden­
tical to (C8) when fl€<J is isotropic. 

Kumazawa [1963J recognized the importance 
of shape as a thermodynamic parameter, and 
his discussion of the effect of stress on twinning 
in calcite (p. 185) is similar to our procedure. 
However, he does not consider coherent poly­
morphic transitions in which a discontinuity in 
entropy occurs (latent heat) and thus does not 
derive nor use the nonhydrostatic analogy of 
the Clapeyron relation (C6). 
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